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ABSTRACT

It is now possible to allow VMs hosting HPC applications tarse
lessly bridge distributed cloud resources and tightlypted super-
computing and cluster resources. However, to achieve thé-ap
cation performance that the tightly-coupled resourcescapable
of, it is important that the overlay network not introducersi-
cant overhead relative to the native hardware, which isimetase
for current user-level tools, including our own existing EW/U
system. In response, we describe the design, implememntaitial
evaluation of a layer 2 virtual networking system that hagline
gible latency and bandwidth overheads in 1-10 Gbps networks
Our system, VNET/P, is directly embedded into our publichgi&
able Palacios virtual machine monitor (VMM). VNET/P actéev
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INTRODUCTION

Cloud computing in the “infrastructure as a service” (laa®ydel
has the potential to provide economical and effective amated
resources for high performance computing. In this modelaan
plication is mapped into a collection of virtual machines\¥)
that are instantiated as needed, and at the scale needesked)nd
for loosely-coupled applications, this concept has rgadibved
from research [6, 38] to practice [33]. As we describe in BecB,
such systems can also be adaptive, autonomically selezipigp-
priate mappings of virtual components to physical comptsén
maximize application performance or other objectives. Ewosv,
tightly-coupledscalable high performance computing (HPC) appli-
cations currently remain the purview of resources such astets

1.

native performance on 1 Ghps Ethernet networks and very high and supercomputers. We seek to extend the adaptive laa8 clou

performance on 10 Gbps Ethernet networks and In niBand. The
NAS benchmarks generally achieve over 95% of their native pe
formance on both 1 and 10 Gbps. These results suggest iibliea

to extend a software-based overlay network designed foipodm
ing at wide-area scales into tightly-coupled environments
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computing model into these regimes, allowing an applicatom
dynamically span both kinds of environments.

The current limitation of cloud computing systemsltmsely-
coupledapplications is not due to machine virtualization limita-
tions. Current virtual machine monitors (VMMs) and other-vi
tualization mechanisms present negligible overhead fdd @Rd
memory intensive workloads [14, 31]. With VMM-bypass [29] o
self-virtualizing devices [35] the overhead for direct @ss to net-
work devices can also be made negligible.

Considerable effort has also gone into achieving low-osach
network virtualization and traf ¢ segregation within andiridual
data center through extensions or changes to the netwodwaee
layer [32, 9, 20]. While these tools strive to provide unifoperfor-
mance across a cloud data center (a critical feature for rig
applications), they do not provide the same features oneppli-
cation has migrated outside the local data center, or spaitfpta
data centers, or involves HPC resources. Furthermore, [ty
compatibility with the more specialized interconnectsserg on
most HPC systems. Beyond the need to support our envisioned
computing model across today's and tomorrow's tightly-{oiea
HPC environments, we note that data center network design an
cluster/supercomputer network design seems to be comeefdi
10]. This suggests that future data centers deployed foergén
purpose cloud computing will become an increasingly better
tightly-coupled parallel applications, and thereforesetwiron-
ments could potentially also bene t.

The current limiting factor in the adaptive cloud- and HR&sning
model described above for tightly-coupled applicationthes per-
formance of the virtual networking system. Current adaptiloud
computing systems use software-based overlay networkarty c



inter-VM traf c. For example, our VNET/U system, which is de
scribed in more detail later, combines a simple networkibg a
straction within the VMs with location-independence, Iveade-
independence, and traf c control. Speci cally, it exposzsayer
2 abstraction that lets the user treat his VMs as being on pleim
LAN, while allowing the VMs to be migrated seamlessly across
resources by routing their traf ¢ through the overlay. ByntmI-
ling the overlay, the cloud provider or adaptation agent can-
trol the bandwidth and the paths between VMs over which traf
ows. Such systems [42, 37] and others that expose diffeatnt
stractions to the VMs [47] have been under continuous rebeard
development for several years. Current virtual networlgggtems
have suf ciently low overhead to effectively host loosalgupled
scalable applications [5], but their performance is insidnt for
tightly-coupled applications [34].

In response to this limitation, we have designed, impleednt
and evaluated VNET/P, which shares its model and vision with
VNET/U, but is designed to achieve near-native performandtiee
1 Gbps and 10 Gbps switched networks common in clusters today
and pave the way for even faster networks, such as In niBamd,
the future. VNET/U is presented in more detail in Section 3.

VNET/P is implemented in the context of our publicly avail-
able, open source Palacios VMM [25], which is in part designe
to support virtualized supercomputing. A detailed dedimip of
VNET/P's design and implementation is given in Section 4. As
a part of Palacios, VNET/P is publicly available. VNET/P kbu
be implemented in other VMMs, and as such provides a proof-of
concept that overlay-based virtual networking for VMs, hwiter-
formance overheads low enough to be inconsequential even in
tightly-coupled computing environment, is clearly po$sib

The performance evaluation of VNET/P (Section 5) showsithat
is able to achieve native bandwidth on 1 Gbps Ethernet withalls
increase in latency, and very high bandwidth on 10 Gbps Béter
with a similar, small latency increase. We also demonsiragec-
tion 6 that VNET/P can effectively support running Etherbased
networked programs on non-Ethernet HPC communicatiorcdevi
speci cally In niBand NICs. On 10 Gbps hardware, the kernel
level VNET/P system provides on average 10 times more band-
width and 7 times less latency than the user-level VNET/Uesyis
can.

Our contributions are as follows:

We articulate the bene ts of extending virtual networkiray ¥Ms
down to clusters and supercomputers with high performance
networks. These bene ts are also applicable to data cetttats
support laaS cloud computing.

We describe the design and implementation of a virtual neding
system, VNET/P, that does so. The design could be applieth&s o
VMMs and virtual network systems.

We evaluate VNET/P, nding that it provides performancetwit
negligible overheads on 1 Gbps Ethernet networks, and neaiey
overheads on 10 Gbps Ethernet networks. VNET/P generadly ha
little impact on performance for the NAS benchmarks.

We describe how VNET/P also provides its abstraction on fop o

In niBand hardware, allowing guests to exploit such hardeva
without any special drivers or an In niBand stack.

Through the use of low-overhead overlay-based virtual ngtw
ing in high-bandwidth, low-latency environments such aseant
clusters and supercomputers, and future data centers, aketgse
make it practical to use virtual networking at all times, ewehen
running tightly-coupled applications on such high-endiemments.
This would allow us to seamlessly apdactically extend the al-
ready highly effective adaptive virtualization-based3atoud com-
puting model to such environments.

2. RELATED WORK

VNET/P is related to NIC virtualization, overlays, and wiat
networks, as we describe below.

NIC virtualization: There is a wide range of work on providing
VMs with fast access to networking hardware, where no oyerla
is involved. For example, VMware and Xen support either an em
ulated register-level interface [41] or a paravirtualizetérface to
guest operating system [30]. While purely software-badedal-
ized network interface has high overhead, many techniqags h
been proposed to support simultaneous, direct-acces®nei®.
For example, some work [29, 35] has demonstrated the usdfof se
virtualized network hardware that allows direct guest asc¢hus
provides high performance to untrusted guests. Willmaratheave
developed a software approach that also supports contudisstt
network access by untrusted guest operating systems [3aHdi-
tion, VPIO [48] can be applied on network virtualization titoe
virtual passthrough I/O on non-self-virtualized hardwahe con-
trast with such work, VNET/P provides fast access to an ayer|
network, which includes encapsulation and routing.

Overlay networks: Overlay networks implement extended net-
work functionality on top of physical infrastructure, forample
to provide resilient routing (e.g, [2]), multicast (e.g3]}, and dis-
tributed data structures (e.g., [40]) without any cooperafrom
the network core; overlay networks use end-systems to geovi
their functionality. VNET is an example of a speci ¢ classaver-
lay networks, namely virtual networks, discussed next.

Virtual networking: Virtual networking systems provide a ser-
vice model that is compatible with an existing layer 2 or 3-net
working standard. Examples include VIOLIN [17], ViNe [45],
VINI [3], SoftUDC VNET [19], OCALA [18] and WoW [8]. Like
VNET, VIOLIN, SoftUDC, and WoW are speci cally designed for
use with virtual machines. Of these, VIOLIN is closest to VNE
(and contemporaneous with VNET/U), in that it allows for the
namic setup of an arbitrary private layer 2 and layer 3 virnet-
work among VMs. The key contribution of VNET/P is to show
that this model can be made to work with minimal overhead even
in extremely low latency, high bandwidth environments.

Connections: VNET/P could itself leverage some of the related
work described above. For example, effective NIC virtuatiian
might allow us to push encapsulation directly into the guesto
accelerate encapsulation via a split scatter/gather magppMg
unencapsulated links to VLANs would enhance performance on
environments that support them. There are many optionsnfer i
plementing virtual networking and the appropriate choiepehds
on the hardware and network policies of the target envirartme
VNET/P, we make the choice of minimizing these dependencies

3. VNET MODEL AND VNET/U

The VNET model was originally designed to support adaptive
computing on distributed virtualized computing resoureggin
the Virtuoso system [4], and in particular to support thepdiva
execution of a distributed or parallel computation exegmytin a
collection of VMs potentially spread across multiple paetis or
supercomputing sites. The key requirements, which alsd farl
the present paper, were as follows.

VNET would make within-VM network con guration the sole
responsibility of the VM owner.

VNET would provide location independence to VMs, allowithgiin
to be migrated between networks and from site to site, while
maintaining their connectivity, without requiring any tiin-VM
con guration changes.

VNET would provide hardware independence to VMs, allowingn
to use diverse networking hardware without requiring the
installation of specialized software.



VNET would provide minimal overhead, compared to native
networking, in the contexts in which it is used. Ty > ——

The VNET model meets these requirements by carrying thésuser
VMs' traf ¢ via a con gurable overlay network. The overlayrpsents
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a simple layer 2 networking abstraction: a user's VMs appear
be attached to the user's local area Ethernet network, dézss
of their actual locations or the complexity of the VNET topol
ogy/properties. Further information about the model carfooed
elsewhere [42].

The VNET overlay is dynamically recon gurable, and can &t a
a locus of activity for an an adaptive system such as Virtuésn
cusing on parallel and distributed applications runnindpivsely- P Nem
coupled virtualized distributed environments e.g., “l&@Buds”,
we demonstrated that the VNET “layer” can be effectivelyduse
to: (1) monitor application communication and computatim®:
havior [11]), (2) monitor underlying network behavior [12B) for- Figure 1: VNET/P architecture
mulate performance optimization problems [44], (4) adslresch
problems through VM migration and overlay network contes],
scheduling [27, 28], network reservations [26], and nelvgarvice
interposition [22].

The VNET/P system described in this paper is compatible,with
and compared to, our previous VNET implementation, VNET/U.
Both support a dynamically con gurable general overlaydiogy 4.1 Palacios VMM
with dynamically con gurable routing on a per MAC address ba  \/NET/p is implemented in the context of our Palacios VMM.

sis. The topology and routing con guration is subject tolgib Palacios is an OS-independent, open source, BSD-licepstd,

or distributed control (for example, by the VADAPT [43]) par jic|y ayailable embeddable VMM designed as part of the V3VEE
of Virtuoso. The overlay carries Etherr]et packets enca;bgdlln project fittp://v3vee.org ). The V3VEE project is a collab-
UDP packets, TCP streams with and without SSL encryptiolRTO 4 rative community resource development project involiitagth-
privacy-preserving streams, and others. Because Ethpad®ts \ estern University, the University of New Mexico, Sandiatisaal
are used, the VNET abstraction can also easily interfacectyr Labs, and Oak Ridge National Lab. Detailed information abou
with most commoqny network dewce.s, |nclud|pg V|rtuaI.N;|@x- Palacios can be found elsewhere [25, 23]. Palacios is oaymbl
posed by VMMs in the host, and with fast virtual devices (€.9. \jyalizing large scale (4096+ nodes) with 5% overheads [24].

Linux virtio network devices) in guests. _ Palacios's OS-agnostic design allows it to be embeddechimtinle
While VNET/P is implemented within the VMM, VNET/U is range of different OS architectures.

implemented as a user-level system. As a user-level system,

readily interfaces with VMMs such as VMware Server and Xen, 4.2 Architecture

and requires no host changes to be used, making it very easy o g 16 1 shows the overall architecture of VNET/P, and #llus

provider to bring it up on a new machine. Further, it is easyriog trates the operation of VNET/P in the context of the Palaviukv

up VNET daemons when and where needed to act as proxies ofgmpedded in a Linux host. In this architectugegstsun inappli-

waypoints. AVNET dae_mon hasa <_:ontro| port W_h'Ch speaks acon cation VMs Off-the-shelf guests are fully supported. Each applica-

trol language for dynamic con guration. A collection of ﬂa(al!ow tion VM provides a virtual (Ethernet) NIC to its guest. Foghiper-

for the wholesale_ construct_lon and teardown of VNET top_cdeg formance applications, as in this paper, the virtual NICfoons

as well as dynamic adaptation of the topology and forwarditigs to the virtio interface, but several virtual NICs with harae inter-

to the observed traf ¢ and conditions on the underlying r@& 565 are also available in Palacios. The virtual NIC cosvet-
The last reported measurement of VNET/U showed it achieving grnet packets between the application VM and the PalacioMVM

21.5 MB/s (172 Mbps) with a 1 ms latency overhead communicat- |jging 'the virtio virtual NIC, one or more packets can be coees

ing be_tween_Llnux 2.6 VMs running in VMware Server GSX 2.5 on from an application VM to Palacios with a single VM exit, and

machines with dual 2.0 GHz Xeon processors [22]. A currerdime o palacios to the application VM with a single VM exit+gat

surement, described in Section 5, shows 71 MB/s with a 0.8&ms The VNET/P coreis the component of VNET/P that is directly

tency. VNET/U's speeds are suf cient for its purpose in pcug embedded into the Palacios VMM. It is responsible for ragiith-

virtual networking for wide-area and/or loosely-coupléastdbuted ernet packets between virtual NICs on the machine and betwee

computing. They are not, however, suf cient for use withialas- this machine and remote VNET on other machines. The VNET/P

ter at gigabit or greater speeds. Making this basic VM-to-path core's routing rules are dynamically con gurable, throutjie con-
competitive with hardware is the focus of this paper. VNET8U ) interface by the utilities that can be run in user space.

fundamentally limited by the kernel/user_space trans#tineeded The VNET/P core also provides an expanded interface that the
to handle a guest's packet send or receive. In VNET/P, we move ¢qntro) ytilities can use to con gure and manage VNET/P. The
VNET directly into the VMM to avoid such transitions. VNET/P controlcomponent uses this interface to do so. It in turn
acts as a daemon that exposes a TCP control port that uses the

4. DESIGN AND IMPLEMENTATION same con guration language as VNET/U. Between compatible e

We now describe how VNET/P has been architected and imple- capsulation and compatible control, the intent is that VINE&nd
mented in the context of Palacios as embedded in a Linux host. VNET/U be interoperable, with VNET/P providing the “fasttha
Section 6 describes how VNET/P is implemented in the corgéxt To exchange packets with a remote machine, the VNET/P core
a Kitten embedding. The nature of the embedding affects VIRET  uses avNET/P bridgeto communicate with the physical network.

primarily in how it interfaces to the underlying networkitgrd-
ware and networking stack. In the Linux embedding, thisrfate
is accomplished directly in the Linux kernel. In the Kittemlged-
ding, the interface is done via a service VM.
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Figure 2: VNET/P core's internal logic.

The VNET/P bridge runs as a kernel module in the host kerngl an
uses the host's networking facilities to interact with piogs$ net-
work devices and with the host's networking stack. An addil
responsibility of the bridge is to provide encapsulatioar perfor-
mance reasons, we use UDP encapsulation, in a form conmgatibl
with that used in VNET/U. TCP encapsulation is also suppbrte
The bridge selectively performs UDP or TCP encapsulatian fo
packets destined for remote machines, but can also delivEtta
ernet packet without encapsulation. In our performancéatian,
we consider only encapsulated traf c.

The VNET/P core consists of approximately 2500 lines of C in
Palacios, while the VNET/P bridge consists of about 2008diof
C comprising a Linux kernel module. VNET/P is available \iia t
V3VEE project's public git repository, as part of the “detbtanch
of the Palacios VMM.

4.3 VNET/P core

The VNET/P core is primarily responsible for routing, ang-di
patching raw Ethernet packets. It intercepts all Etherraekpts
from virtual NICs that are associated with VNET/P, and fordea
them either to VMs on the same host machine or to the outside ne
work through the VNET/P bridge. Each packet is routed based o
its source and destination MAC addresses. The internakpsicg
logic of the VNET/P core is illustrated in Figure 2.

Routing: To route Ethernet packets, VNET/P maintains routing
tables indexed by source and destination MAC addressesoddgh
this table structure only provides linear time lookups, sthtable-
based routing cache is layered on top of the table, and thencom
case is for lookups to hit in the cache and thus be servicedrin ¢
stant time.

A routing table entry maps to a destination, which is either a
link or aninterface A link is an overlay destination—it is the next
UDP/IP-level (i.e., IP address and port) destination offiheket,
on some other machine. A special link corresponds to thée feata
work. The local network destination is usually used at thetfentry
point” where the VNET overlay is attached to the user's pbgki
LAN. A packet routed via a link is delivered to another VNET/P
core, a VNET/U daemon, or the local network. An interface is a
local destination for the packet, corresponding to sontei@ilNIC.

For an interface destination, the VNET/P core directly st
the packet to the relevant virtual NIC. For a link destinafit in-
jects the packet into the VNET/P bridge along with the desiim
link identi er. The VNET/P bridge demultiplexes based o fink
and either encapsulates the packet and sends it via thesporrd-
ing UDP or TCP socket, or sends it directly as a raw packeteo th
local network.

Guest [[Guest
packets queues

oo oo

VNET/P Core

Routing table

Packet
Dispatcher

Packet
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Thread Thread
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- - -
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Core Core Core l Core I

Figure 3: VNET/P running on a multicore system. The selec-
tion of how many, and which cores to use for packet dispatcher
threads is made dynamically.

Packet processing: Packet forwarding in the VNET/P core is
conducted bypacket dispatchers A packet dispatcher interacts
with each virtual NIC to forward packets in one of two modes:
guest-driven moder VMM-driven mode

The purpose of guest-driven mode is to minimize latency for
small messages in a parallel application. For example, riebap-
eration would be best served with guest-driven mode. In tlesg
driven mode, the packet dispatcher is invoked when the guast
teraction with the NIC explicitly causes an exit. For exaemphe
guest might queue a packet on its virtual NIC and then causgian
to notify the VMM that a packet is ready. In guest-driven moae
packet dispatcher runs at this point. Similarly, on receivpacket
dispatcher queues the packet to the device and then imrebdiat
noti es the device.

The purpose of VMM-driven mode is to maximize throughput
for bulk data transfer in a parallel application. Unlike gtidriven
mode, VMM-driven mode tries to handle multiple packets pbt V
exit. It does this by having VMM poll the virtual NIC. The NIG i
polled in two ways. First, itis polled, and a packet dispatdh run,
if needed, in the context of the current VM exit (which is uated
to the NIC). Even if exits are infrequent, the polling andpdich
will still make progress during the handling of timer intept exits.

The second manner in which the NIC can be polled is in the
context of a packet dispatcher running in a kernel threaidénthe
VMM context, as shown in Figure 3. The packet dispatcheraitire
can be instantiated multiple times, with these threadsingnon
different cores in the machine. If a packet dispatcher three:
cides that a virtual NIC queue is full, it forces the NIC's VM t
handle it by doing a cross-core IPI to force the core on whigh t
VM is running to exit. The exit handler then does the needeshiev
injection. Using this approach, it is possible, to dynarfycam-
ploy idle processor cores to increase packet forwardinghath.

In uenced by Sidecore [21], an additional optimization we-d
veloped was to of oad in-VMM VNET/P processing, beyond patck
dispatch, to an unused core or cores, thus making it pogsibtee
guest VM to have full use of its cores (minus the exit/entrgtso
when packets are actually handed to/from it).

VNET/P switches between these two modes dynamically de-
pending on the arrival rate of packets destined to or fronvitiaal
NIC. For low rate, it enables guest-driven mode to reducesthe
gle packet latency. On the other hand, with a high arrivad rat
switches to VMM-driven mode to increase throughput. Speci
cally, the VMM detects whether the system is experiencinggh h
exit rate due to virtual NIC accesses. It recalculates tteepgariod-



ically. If the rate is high enough when the guest transmitkets,
then VNET/P switches the virtual NIC associated with thagsju
from guest-driven mode to VMM-driven mode. In other hand, if
the rate drops low from the last recalculate period, it skdcback
from VMM-driven to guest-driven mode.

For a 1 Gbps network, guest-driven mode is suf cient to allow
VNET/P to achieve the full native throughput. On a 10 Gbps net
work, VMM-driven mode is essential to move packets through t
VNET/P core with near-native throughput.

4.4 Virtual NICs

VNET/P is designed to be able to support any virtual Ether-
net NIC device. A virtual NIC must, however, register itseith
VNET/P before it can be used. This is done during the initili
tion of the virtual NIC at VM con guration time. The registra
tion provides additional callback functions for packenhgmission,
transmit queue polling, and packet reception. These fanstes-
sentially allow the NIC to use VNET/P as its backend, instefd
using an actual hardware device driver backend.

Linux virtio virtual NIC:  Virtio [36], which was recently de-
veloped for the Linux kernel, provides an ef cient abstrantfor
VMMs. A common set of virtio device drivers are now included
as standard in the Linux kernel. To maximize performance, ou
performance evaluation con gured the application VM wital&
cios's virtio-compatible virtual NIC, using the defaultriix virtio
network driver.

MTU: The maximum transmission unit (MTU) of a networking
layer is the size of the largest protocol data unit that tlyeda@an

When the VNET/P core hands a packet and routing directive up
to the bridge, one of two transmission modes will occur, deliey
on the destination. In direct sendthe Ethernet packet is directly
sent. This is common for when a packet is exiting a VNET over-
lay and entering the physical network, as typically happemshe
user's network. It may also be useful when all VMs will remain
on a common layer 2 network for their lifetime. In @mcapsu-
lated sendhe packet is encapsulated in a UDP packet and the UDP
packet is sent to the directed destination IP address andTgus is
the common case for traversing a VNET overlay link. Simijlgidr
packet reception, the bridge uses two modes, simultangousa
direct receivahe host NIC is run in promiscuous mode, and packets
with destination MAC addresses corresponding to thoseasiqd
by the VNET/P core are handed over to it. This is used in con-
junction with direct send. In aancapsulated receividDP packets
bound for the common VNET link port are disassembled and thei
encapsulated Ethernet packets are delivered to the VNEI# ¢
This is used in conjunction with encapsulated send. Ouroperf
mance evaluation focuses solely on encapsulated send egidae

4.6 Control

The VNET/P control component allows for remote and local
con guration of links, interfaces, and routing rules sottha over-
lay can be constructed and changed over time. VNET/U already
has user-level tools to support VNET, and, as we describ&bm
tion 3, a range of work already exists on the con guration,nmo
itoring, and control of a VNET overlay. In VNET/P, we reuse
these tools as much as possible by having the user-spaceofiew

pass onwards. A larger MTU improves throughput because eachyNET/P conform closely to that of VNET/U. TheNET/P con-

packet carries more user data while protocol headers hawved
size. A larger MTU also means that fewer packets need to be pro
cessed to transfer a given amount of data. Where per-paoket p
cessing costs are signi cant, larger MTUs are distinctlgfprable.
Because VNET/P adds to the per-packet processing costogtpp
ing large MTUs is helpful.

VNET/P presents an Ethernet abstraction to the applicatMdn
The most common Ethernet MTU is 1500 bytes. However, 1 Gbit
and 10 Gbit Ethernet can also use “jumbo frames”, with an MTU
of 9000 bytes. Other networking technologies support eaeger
MTUs. To leverage the large MTUs of underlying physical NICs
VNET/P itself supports MTU sizes of up to 64 KBThe appli-
cation OS can determine the virtual NIC's MTU and then trans-
mit/receive accordingly. VNET/P advertises the apprdprTU.

The MTU used by virtual NIC can resultin encapsulated VNET/P
packets that exceed the MTU of the underlying physical netwo
In this case, fragmentation has to occur, either in the VNHEFidge
or in the host NIC (via TCP Segmentation Of oading (TSO))ag+
mentation and reassembly is handled by VNET/P and is totally
transparent to the application VM. However, performanck suif-
fer when signi cant fragmentation occurs. Thus it is im@ort that
the application VM's device driver select an MTU carefulgnd
recognize that the desirable MTU may change over time, fanex
ple after a migration to a different host. In Section 5, welygra
throughput using different MTUs.

4.5 VNET/P Bridge

The VNET/P bridge functions as a network bridge to directpac
ets between the VNET/P core and the physical network thraugh
host NIC. It operates based on the routing decisions madaey t
VNET/P core which are passed along with the packets to be for-
warded. It is implemented as a kernel module running in thet.ho

1This may be expanded in the future. Currently, it has beegdsiz
to support the largest possible IPv4 packet size.

guration consoleallows for local control to be provided from a
le, or remote control via TCP-connected VNET/U clients ¢bu
as tools that automatically con gure a topology that is ayppiate
for the given communication pattern among a set of VMs [48]).
both cases, the VNET/P control component is also respanfibl
validity checking before it transfers the new con guratitm the
VNET/P core.

4.7 Performance-critical data paths and ows

Figure 4 depicts how the components previously described op
ate during packet transmission and reception. These ayeetffier-
mance critical data paths and ows within VNET/P, assuminatt
virtio virtual NICs (Section 4.4) are used. The boxed regiaf
the gure indicate steps introduced by virtualization, fbatithin
the VMM and within the host OS kernel. There are also addition
overheads involved in the VM exit handling for 1/0 port read=l
writes and for interrupt injection.

Transmission: The guest OS in the VM includes the device
driver for the virtual NIC. The driver initiates packet tmission
by writing to a speci c virtual I/O port after it puts the pagkinto
the NIC's shared ring buffer (TXQ). The I/O port write causes
an exit that gives control to the virtual NIC 1/O handler inl&a
cios. The handler reads the packet from the buffer and wittes
to VNET/P packet dispatcher. The dispatcher does a rousiblg t
lookup to determine the packet's destination. For a packstided
for a VM on some other host, the packet dispatcher puts thieepac
into the receive buffer of the VNET/P bridge and notify it. dMe
while, VNET/P bridge fetches the packet from the receivedyuf
determines its destination VNET/P bridge, encapsulaipdcket,
and transmits it to the physical network via the host's NIC.

Note that while the packet is handed off multiple times, it is
copied only once inside the VMM, from the send buffer (TXQ)
of the receive buffer of the VNET/P bridge. Also note that l&hi
the above description, and the diagram suggest sequntiacket
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Figure 4: Performance-critical data paths and ows for packet
transmission and reception. Solid boxed steps and componen
occur within the VMM itself, while dashed boxed steps and
components occur in the host OS.

dispatch can occur on a separate kernel thread running asate
core, and the VNET/P bridge itself introduces additionat@o-
rency. From the guest's perspective, the I/O port write thitiated
transmission returns essentially within a VM exit/entméi.
Reception: The path for packet reception is essentially sym-
metric to that of transmission. The host NIC in the host mehi
receives a packet using its standard driver and delivers the
VNET/P bridge. The bridge unencapsulates the packet andssen
the payload (the raw Ethernet packet) to the VNET/P core. The
packet dispatcher in VNET/P core determines its destinati
and puts the packet into the receive buffer (RXQ) of its atNIC.
Similar to transmission, there is considerably concuryendhe
reception process. In particular, packet dispatch canranqaral-
lel with the reception of the next packet.

5. PERFORMANCE EVALUATION

The purpose of our performance evaluation is to determime ho
close VNET/P comes to native throughput and latency in thetmo
demanding (lowest latency, highest throughput) hardwavien-
ments. We consider communication between two machinesavhos
NICs are directly connected in most of our detailed benclmar
In the virtualized con guration the guests and performatesting
tools run on top of Palacios with VNET/P carrying all traf @b
tween them using encapsulation. In the native con guratibe
same guest environments run directly on the hardware.

Our evaluation of communication performance in this enwviro
ment occurs at three levels.

how VNET/P's impact on the performance and scalability abpa
lel applications.

5.1 Testbed and con gurations

Most of our microbenchmark tests are focused on the end-to-
end performance of VNET/P. Therefore our testbed consfdtsm
physical machines, which we call host machines. Each madtzaa
a quadcore 2.4 GHz X3430 Intel Xeon(tm) processor, 8 GB RAM,
a Broadcom NetXtreme Il 1 Gbps Ethernet NIC (1000BASE-T),
and a NetEffect NE020 10 Gbps Ethernet ber optic NIC (10GEBAS
SR) in a PCl-e slot. The Ethernet NICs of these machines are di
rectly connected with twisted pair and ber patch cables.

All microbenchmarks included in the performance sectiom ar
run in the testbed described above. The HPCC and NAS appli-
cation benchmarks are run on a 6-node test cluster desciibed
Section 5.4.

We considered the following two software con gurations:

Native: In the native con guration, neither Palacios nor VNET/P is
used. A minimal BusyBox-based Linux environment based on an
unmodi ed 2.6.30 kernel runs directly on the host machinds.
refer to the 1 and 10 Gbps results in this con guratiorNagive-1G
andNative-10G respectively.

VNET/P:The VNET/P con guration corresponds to the architectural
diagram given in Figure 1, with a single guest VM running on
Palacios. The guest VM is con gured with one virtio network
device, 2 cores, and 1 GB of RAM. The guest VM runs a minimal
BusyBox-based Linux environment, based on the 2.6.30 kerne
The kernel used in the VM is identical to that in the Native
con guration, with the exception that the virtio NIC driveare
loaded. The virtio MTU is con gured as 9000 Bytes. We refer to
the 1 and 10 Gbps results in this con guration\&SET/P-1Gand
VNET/P-10Grespectively.

To assure accurate time measurements both natively ane in th
virtualized case, our guest is con gured to use the CPU'decyc
counter, and Palacios is con gured to allow the guest disext
cess to the underlying hardware cycle counter. Our 1 Gbps NIC
only supports MTUs up to 1500 bytes, while our 10 Gbps NIC can
support MTUs of up to 9000 bytes. We use these maximum sizes
unless otherwise speci ed.

5.2 TCP and UDP microbenchmarks

Latency and throughput are the fundamental measurements we
use to evaluate the VNET/P system performance. First, wsiden
these at the IP level, measuring the round-trip latency,Ub&
goodput, and the TCP throughput between two nodes. We neeasur
round-trip latency usinging by sending ICMP packets of different
sizes. UDP and TCP throughput are measured usipgl.10

UDP and TCP with a standard MTU: Figure 5 shows the TCP
throughput and UDP goodput achieved in each of our con gura-
tions on each NIC. For the 1 Gbps network, host MTU is set to
1500 bytes, and for the 10 Gbps network, host MTUs of 1500
bytes and 9000 bytes are both tested. For 1 Gbps, we also com-
pare with VNET/U running on the same hardware with Palacios.
Compared to previously reported results (21.5 MB/s, 1 nm®, t
combination of the faster hardware we use here, and Paldeanis
to VNET/U increasing its bandwidth by 330%, to 71 MB/s, with a
12% reduction in latency, to 0.88 ms. We also tested VNET/th wi
VMware, nding that bandwidth increased by 63% to 35 MB/s,
with no change in latency. The difference in performance SE/U
on the two VMMs is due to a custom tap interface in Palacioslewvh
on VMware, the standard host-only tap is used. Even withdhis

First, we benchmark the TCP and timization, VNET/U cannot saturate a 1 Gbps link.

UDP bandwidth and latency. Second, we benchmark MPI using We begin by considering UDP goodput when a standard host

a widely used benchmark. Finally, we evaluated the perfamaa

MTU size is used. For UDP measurements, ttcp was con gured to

of the HPCC and NAS application benchmarks in a cluster to see use 64000 byte writes sent as fast as possible over 60 sedemds
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Figure 5: End-to-end TCP throughput and UDP goodput of
VNET/P on 1 and 10 Gbps network. VNET/P performs iden-
tically to the native case for the 1 Gbps network and achieves
74—78% of native throughput for the 10 Gbps network.

the 1 Gbps network, VNET/P easily matches the native goodput
For the 10 Gbps network, VNET/P achieves 74% of the native UDP
goodput.

For TCP throughput, ttcp was con gured to use a 256 KB socket
buffer, and to communicate 40 MB writes were made. Similar to
the UDP results, VNET/P has no dif culty achieving nativedhgh-

put on the 1 Gbps network. On the 10 Gbps network, using a stan-

dard Ethernet MTU, it achieves 78% of the native throughpte

(a) 1 Gbps network (Host MTU=1500 Bytes)
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(b) 10 Gbps network (Host MTU=1500, 9000 Bytes)

Figure 6: End-to-end round-trip latency of VNET/P as a func-
tion of ICMP packet size. Small packet latencies on a 10 Ghps
network in VNET/P are 130 s.

10 Gbps), itis important to keep in mind the absolute perforoe.
On a 10 Gbps network, VNET/P achieves a 130round-trip, end-
to-end latency. The latency of VNET/P is almost seven timegt
than that of VNET/U.

5.3 MPI microbenchmarks

Parallel programs for distributed memory computers aré-typ
cally written to the MPI interface standard. We used the Offeh
1.3[7] implementation in our evaluations. We measured #réop-

UDP goodput and TCP throughput that VNET/P is capable of, us- mance of MPI over VNET/P by employing the widely-used Intel

ing a standard Ethernet MTU, are approximately 8 times these
would expect from VNET/U given the 1 Gbps results.

UDP and TCP with a large MTU: We now consider TCP and
UDP performance with 9000 byte jumbo frames our 10 Gbps NICs
support. We adjusted the VNET/P MTU so that the ultimate phca
sulated packets will tinto these frames without fragmetita. For
TCP we con gure ttcp to use writes of corresponding size, imax
mize the socket buffer size, and do 4 million writes. For URB,
con gure ttcp to use commensurately large packets sentsisafa
possible for 60 seconds. The results are also shown in thed-fg
We can see that performance increases across the board reaimpa
to the 1500 byte MTU results. Compared to the VNET/U perfor-
mance we would expect in this con guration, the UDP goodpmat a
TCP throughput of VNET/P are over 10 times higher.

Latency: Figure 6 shows the round-trip latency for different
packet sizes, as measured by ping. The latencies are thagaver

MPI Benchmark Suite (IMB 3.2.2) [16], focusing on the paiat-
point messaging performance. We compared the basic MPidate
and bandwidth achieved by VNET/P and natively.

Figures 7 and 8(a) illustrate the latency and bandwidthntedo
by Intel MPI PingPong benchmark for our 10 Gbps con guration
Here the latency measured is the one-way, end-to-end capipl-
level latency. That is, it is the time from when an MPI sendtsta
on one machine to when its matching MPI receive call complete
on the other machine. For both Native and VNET/P, the host MTU
is set to 9000 bytes.

VNET/P's small message MPI latency is about 5§ about 2.5
times worse than the native case. However, as the message siz
increases, the latency difference decreases. The measueof
end-to-end bandwidth as a function of message size showmghat
tive MPI bandwidth is slightly lower than raw UDP or TCP thgtu
put, and VNET/P performance tracks it similarly. The botttne

of 100 measurements. While the increase in latency of VNET/P IS that the current VNET/P implementation can deliver an MPI

over Native is signi cant in relative terms (2x for 1 Gbps, 8¢

tency of 55 s and bandwidth of 510 MB/s on 10 Gbps Ethernet
hardware.
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Figure 8(b) shows the results of the MPI SendRecv microbench
mark in which each node simultaneously sends and receiveseT
is no reduction in performance between the bidirectionabcnd
the unidirectional case.

5.4 HPCC benchmarks on more nodes

bors in the ring, measuring bandwidth and latency. The baged
tests model the communication behavior of multi-dimenaialomain-
decomposition applications. Both naturally ordered riagd ran-
domly ordered rings are evaluated. Communication is dorik wi
MPI non-blocking sends and receives, and MPI SendRecv.,Here
the bandwidth per process is de ned as total message volume d
vided by the number of processes and the maximum time needed
in all processes. We reported the ring-based bandwidthsg-m
plying them with the number of processes in the test.

Figure 9 shows the results for different numbers of test@sees.
The ping-pong latency and bandwidth results are consistétht
what we saw in the previous microbenchmarks: in the 1 Gbps net
work, bandwidth are nearly identical to those in the natigses
while latencies are 1.2-2 times higher. In the 10 Gbps nétwor
bandwidths are within 60-75% of native while latencies drewd
2 to 3 times higher. Both latency and bandwidth under VNET/P
exhibit the same good scaling behavior of the native case.

5.5 Application benchmarks

We evaluated the effect of a VNET/P overlay on application
performance by running two HPCC application benchmarks and
the whole NAS benchmark suite on the cluster described in Sec
tion 5.4. Overall, the performance results from the HPCCIHA&
benchmarks suggest that VNET/P can achieve high perforenanc

To test VNET/P performance on more nodes, we ran the HPCC for many parallel applications.

benchmark [15] suite on a 6 node cluster with 1 Gbps and 10 Gbps

HPCC application benchmarks: We considered the two ap-

Ethernet. Each node was equipped with two quad-core 2.3 GHz plication benchmarks from the HPCC suite that exhibit thrgda

2376 AMD Opterons, 32 GB of RAM, an nVidia MCP55 Forthdeth

volume and complexity of communication: MPIRandomAcceess

1 Gbps Ethernet NIC and a NetEffect NEO20 10 Gbps Ethernet and MPIFFT. For 1 Gbps networks, the difference in perforoean

NIC. The nodes were connected via a Fujitsu XG2000 10Gb Eth-

ernet Switch.

The VMs were all con gured exactly as in previous tests, with
virtual cores, 1 GB RAM, and a virtio NIC. For the VNET/P test
case, each host ran one VM. We executed tests with 2, 3, 4d% an
VMs, with 4 HPCC processes per VM (one per virtual core). Thus
our performance results are based on HPCC with 8, 12, 16, &0 an
24 processes for both VNET/P and Native tests. In the natises;
no VMs were used, and the processes ran directly on the haist. F
Gbps testing, the host MTU was set to 1500, while for the 105Gbp
cases, the host MTU was set to 9000.

Latency-bandwidth benchmark: This benchmark consists of
the ping-pong test and the ring-based tests. The ping-pestg t
measures the latency and bandwidth between all distincs jpdi
processes. The ring-based tests arrange the processes rintp
topology and then engage in collective communication anmegh-

is negligible so we focus here on 10 Gbps networks.

In MPIRandomAccess, random numbers are generated and writ-
ten to a distributed table, with local buffering. Perforroans
measured by the billions of updates per second (GUPSs) tleat ar
performed. Figure 10(a) shows the results of MPIRandomgsce
comparing the VNET/P and Native cases. VNET/P achieves 65-
70% application performance compared to the native cases, a
performance scales similarly.

MPIFFT implements a double precision complex one-dimeradio
Discrete Fourier Transform (DFT). Figure 10(b) shows theutes
of MPIFFT, comparing the VNET/P and Native cases. It shows
that VNET/P's application performance is within 60-70% atine
performance, with performance scaling similarly.

NAS parallel benchmarks: The NAS Parallel Benchmark (NPB)
suite [46] is a set of ve kernels and three pseudo-apploreti
that is widely used in parallel performance evaluation. \ec-
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Figure 10: HPCC application benchmark results. VNET/P achéves reasonable and scalable application performance whsnpport-
ing communication-intensive parallel application workloads on 10 Gbps networks. On 1 Gbps networks, the difference ieegligible.

ically use NPB-MPI 2.4 in our evaluation. In our descriptiove VM is run on each physical machine, and it is con gured as de-
name executions with the format "name.class.procs". Famgie, scribed in Section 5.4. The test cases with 8 processes rameng
bt.B.16 means to run the BT benchmark on 16 processes with a within 2 VMs and 4 processes started in each VM. The test cases
class B problem size. with 9 processes are run with 4 VMs and 2 or 3 processes per VM.

We run each benchmark with at least two different scales ard 0 Test cases with with 16 processes have 4 VMs with 4 processes p
problem size, except FT, which is only run with 16 procesSase



Mop/s | Native-1G | VNET/P-1G | YRei="—2 (%) | | Native-10G| VNET/P-10G | J=="—20€ (%) |

Native Native 10G
ep.B.8 103.15 101.94 98.8% 102.18 102.12 99.9%
ep.B.16 204.88 203.9 99.5% 208 206.52 99.3%
ep.C.8 103.12 102.1 99.0% 103.13 102.14 99.0%
ep.C.16 206.24 204.14 99.0% 206.22 203.98 98.9%
mg.B.8 | 4400.52 3840.47 87.3% 5110.29 3796.03 74.3%
mg.B.16| 1506.77 1498.65 99.5% 9137.26 7405 81.0%
cg.B.8 1542.79 1319.43 85.5% 2096.64 1806.57 86.2%
cg.B.16 160.64 159.69 99.4% 592.08 554.91 93.7%
[ 1.B.16 | 1575.83 | 1290.78 | 81.9% | | 14323 | 122839 | 85.8% |
is.B.8 78.88 74.61 94.6% 59.15 59.04 99.8%
is.B.16 35.99 35.78 99.4% 23.09 23 99.6%
is.C.8 89.54 82.15 91.7% 132.08 131.87 99.8%
is.C.16 84.76 82.22 97.0% 77.77 76.94 98.9%
lu.B.8 6818.52 5495.23 80.6% 7173.65 6021.78 83.9%
lu.B.16 7847.99 6694.12 85.3% 12981.86 9643.21 74.3%
sp.B.9 1361.38 1215.85 89.3% 2634.53 2421.98 91.9%
sp.B.16 | 1489.32 1399.6 94.0% 3010.71 2916.81 96.9%
bt.B.9 3423.52 3297.04 96.3% 5229.01 4076.52 78.0%
bt.B.16 | 4599.38 4348.99 94.6% 6315.11 6105.11 96.7%

Figure 11: NAS Parallel Benchmark performance with VNET/P an 1 Gbps and 10 Gbps networks. VNET/P can achieve native
performance on many applications, while it can get reasondb and scalable performance when supporting highly commuriation-
intensive parallel application workloads.

VM. We report each benchmarkidop/s totalresult for both native performance on this benchmark, and there is no signi caffiedi
and with VNET/P. ence between the 1 Gbps and 10 Gbps network.

Figure 11 shows the NPB performance results, comparing the SP and BT implement solutions of multiple, independent sys-
VNET/P and Native cases on both 1 Gbps and 10 Gbps networks.tems of non diagonally dominant, scalar, pentadiagonahtapns,
The upshot of the results is that for most of the NAS benchmjark also common in computational uid dynamics. The salienfedif
VNET/P is able to achieve in excess of 95% of the native perfor ence between the two is the communication to computatiao. rat
mance even on 10 Gbps networks. We now describe the restilts fo For SP with 16 processes, VNET/P achieves 94% of native perfo

each benchmark. mance on 1 Gbps around 97% of native on 10 Gbps. For BT at the
EP is an "embarrassingly parallel" kernel that estimatesiiper same scale, 95% of native at 1 Gbps and 97% of native at 10 Gbps

achievable limits for oating point performance, It doestmequire are achieved.

a signi cant interprocessor communication. VNET/P ackigwa-

tive performance in all cases. 6. VNET/P FOR INFINIBAND

MG is a simpli ed multigrid kernel that requires highly stu In support of hardware independence, the 3rd goal of VNET ar-
tured long distance communication and tests both short@mgl | i \1ated in Section 3, we have developed an implementatfon

dlst_ance data communication. With 16 processei, MG a_ahleve VNET/P that allows guests that only support Ethernet NICbeo
native performance on the 1 Gbps network, and 81% of native pe seamlessly run on top of an In niBand network, or to span lia n

formance on the 10 Gbps network. Band networks and other networks. Regardless of the uridgrly
CG implements the conjugate gradient method to compute-anap ey orking hardware, the guests see a simple Ethernet LAN.
proximation to the smallest eigenvalue of a large sparseretmic For the current In niband implementation, the host OS that i
positive de nite matrix. It is typical of unstructured gricbmputa- used is Sandia National Labs' Kitten Iightm}eight kernel. ttii
tions in that it tests irregular long distance communiaatemploy- has, by design, a minimal set of in-kernel services. Forrésason,

ing unit.ructured .matrivaector muItipIiﬁation.bWith 16 plekcsseds, ., the VNET/P Bridge functionality is not implemented in theri,
cG achieves native performance on the 1 Gbps network and 94%y, t rather in a privileged service VM called the Bridge VMthas
of native performance on the 10 Gbps network.

) . S . . direct access to the physical In niband device.
FT implements the solution of partial differential equasaus-

ina FET d h ‘ | cod | In place of encapsulating Ethernet packets in UDP packets fo
ing S, and captures the essence of many spectral codesa |t transmission to a remote VNET/P core, VNET/P's In niBangsu

rigorous tegt of Ipng-distance communication performanaéth port simply maps Ethernet packets to In niBand frames. Ehes
16 nodes, it achieves 82% of native performance on 1 Ghps andframes are then transmitted through an In niBand queue peir

86% of native performance on 10 Gbps. cessed via the Linux IPolB framework.

IS implements a large integer sort of the kind that is impurta We conducted preliminary performance tests of VNET/P on In-
in particle method codes and tests both integer computapieed niBand using 8900 byte TCP payloads running on ttcp on abiest
and communication performance. Here VNET/P achieves @ativ ;. iar to the one described in Section 5.1. Here. each natean
performance in all cases. dual quad-core 2.3 GHz 2376 AMD Opteron machine with 32 GB

LU solves a regular-sparse, blqdi ( 5). onver .ar.]d upper tri- of RAM and a Mellanox MT26428 In niBand NIC in a PCl-e slot.
angular system, a problem associated with implicit corrprial The In niband NICs were connected via a Mellanox MTS 3600
uid dynamics algorithms. VNET/P achieves 75%-85% of nativ 36-port 20/40Gbps In niBand switch
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