Towards Virtual Passthrough 1/O
on Commodity Devices

Lel Xia, Jack Lange, Peter Dinda

{lIxia, jarusl, pdinda}@northwestern.edu

Department of
Electrical Engineering and Computer Science
Northwestern University

http://v3vee.org/
http://www.presciencelab.org/

Overview

VPIO: A modeling-based approach to high

performance |/O virtualization for commodity
devices

— Models could be provided by HW vendors

Intermediate option between passthrough
/O, and emulated I/O

Promising Initial results
Work In progress

Outline

v /O virtualization technigues
v |dea of VPIO

v Palacios VMM

v VPIO system

v Device Model

v Discussion

v Conclusion

I/O virtualization — full emulated 1/O

VM, VM5
Guest OS Guest OS
and Apps and Apps

i
Hypervisor Device
Models
Driver
s =
Devices
I

[Sugerman01]

YV V V

No guest software
change

Easy Migration
All New Device Drivers

High performance
overhead

/O virtualization — paravirtualized 1/O

Service VM
User Level VM
Monitor (ULM)
) Guest OS
Service OS and Apps
Y ”
—
~
\ N~ Hypervisor
v
Devices
1

[BarhamO03, Levasseur04]

» Performance
» Reuse Device Driver
» Change guest device driver

/O virtualization — Passthrough 1/0O

VM i VM
Application i Application
I | |
= |
0S i Guest Module| OS i » Native performance
[| . .
H— i ' » Guest responsible for device
t I .
Backend Module ! | driver
VMM = | | o
Privilegded Module | | » Specialized hardware
\l % ; support
Device » Self-virtualizing devices
- Privileged Access > Migration
---------- - VMM-Bypass Access

[Liu06, Raj07,Shafer07]

/O virtualization — Direct-Mapped 1/O

Guest OS

Pl

» Reusablity/multiplexing
Mapping VMM > Security Issue

Device

VPIO Goals

 Achieve safe and secure direct-
mapped I/O

* With reusability/multiplexing

e To support commodity devices
— No self-virtualized features

* Without losing too much performance

— Expect a little more performance
overhead compared to pass-through 10

Two Requirements For VPIO

* Inexpensive formal model of device

— Building model easier than building device
driver

— Inexpensive to drive such model
 Device can be context-switched

Core Ildea of VPIO

VMM maintains a formal model of device
— keeps track of the physical device status
— driven by guest/device interactions

Model can determines

— Reusable state — whether device Is currently
serially reusable

— DMA — whether a DMA is about to starting and
what memory locations will be used

— Other Iinteresting states

10

Introducing Palacios

New VMM for HPC, architecture, systems, teaching,
and other uses

— Fully Open Source, BSD License

Type | VMM, embeddable into existing kernels
Operating System independent

— Kitten HPC OS (Sandia National Labs)

— GeekOS (University of Maryland)

Implemented using Hardware Virtualization
Extensions

Part of the V3VEE project
— Collaboration between NU and UNM
— http://www.v3vee.org

Available at:
— http://www.v3vee.org/download

Palacios Overview

Supports 32 and 64 bit environments
— Hosts and Guests
— Currently supports Linux Guests

Currently uses AMD SVM extensions
— partial Intel VT support

Full hardware virtualization
— Does not use paravirtualization
— Includes complement of virtual devices

More detalls:

— J. Lange, P. Dinda, “An Introduction to the Palacios Virtual
Machine Monitor---Release 1.0”, Northwestern University EECS
Technical Report NWU-EECS-08-11, November, 2008.

— See us for more info

12

Palacios Detalls

* Virtualization Interface
— Hook 10 Ports
— Hook Memory Regions
— Hook interrupts
— Handle VMEXxits

e Host Interface

— Access standard OS facilities
» (debugging, memory allocation)

— Hook host events
 Interrupts, timer, keyboard, etc...

e Can use shadow or nested paging

13

Palacios People

* Northwestern University
— Jack Lange (Lead Ph.D student)
— Lei Xia (Ph.D student)
— Peter Dinda (PI, Project Lead)

« University of New Mexico
— Zheng Cui (Ph.D student)
— Patrick Bridges (PI)

e Others

— Trammell Hudson and Kevin Pedreti (Sandia)

14

VPIO In Context Of Palacios

............ Unmodified Unmodified
Driver Driver

15

Current Status

 VPIO Is a work In progress

 What is implemented in Palacios
— hook 1/O ports
— hook memory address (byte)
 What is tested outside

— Device Model embedded and tested on QEMU
PC emulator version 0.9.1

16

Device reguests and interrupts

 Guest talks to device by IN/OUT

— Memory-mapped I/O will be similar

— hooked 1/O list, a list of 1/O port operations for
read/write or both. VMM intercepts these 1/Os

— unhooked I/O list (ideally as large as possible)

e |nterrupts
— All physical interrupts are handled by VMM

17

DMA

« DMA is Initiated directly on physical device by guest

— DMM is aware of guest’s DMA operations due to hooked
ports

— DMA destination physical address is checked before the
physical DMA operation is performed

— |If validated, let DMA occur, otherwise, deny it.

e Dealing with DMA failure

— How to notify the guest?
—Ignore the DMA?
— Machine Check Exception?

« Challenge: Dealing with physical address
translations

18

Device Multiplexing

o Context switch between guests
— Switching when device In reusable state
— Device context (related registers, model)

— If not owning device, guest’s operation reguests
are suspended

* Challenge: Device handoff on interrupt
— Handle incoming packet for NIC
— Coming back later

19

Cost of VPIO — Experimental
Setup

e Guests’ I/Os performance overhead
— Palacios running on Qemu and HP system
— Qemu PC emulator 0.9.1
— HP ML115 1.8GHz, AMD Opteron 1210

20

Issue: Cost of exits (Palacios / AMD SVM)

%000
350, 0 O Unhooked 1/0 -QEMU
o 33582 @ Hooked I/O - QEMU
Doy 0 VMM Exit - QEMU
25000 93976 B Device Context Switch - QEMU
o O M Hooked I/O - HP
o <0y :
S o 0 VMM Exit - HP
@) 15000
000
530 1308 1218
0 —

21

VPIO Issue 1/2 : Exit Costs

 Fundamental issue: O(1000) cycle exits.

e Try to minimize number of hooked 1I/O ports

— Model is cheaper in terms of exits than an emulated
device

— Not all I/O ports are needed to drive model

22

VPIO Issue 2/2 : Model

e Can we build such models?
— Is it feasible to build the model?

— How easy to build such model, easier than device
driver?

 How expensive are they to run?

23

Device Model

* Not for verification, not a complete behavioral
model

e Only used to determine...

— Whether and when the device is reusable

— Whether DMA is to be initiated

— What device requests are needed to update model
e State machine, with extra information

— Events: device requests, interrupts

24

Experimental Setup

e Testing setup

— Embedded model in QEMU PC emulator version
0.9.1

— Tested model on a set of network applications
running in guest OS on Qemu

25

NE2K NIC Example

Initiation
Initiate
INT:
PTX,
PX
Cmd: Cmd?
Transmit Stopt—1
Trans ort A aRd
Cmd: Ab :
Stop Dma maWr
AbortD
Cmd
ma A maRd DmaRd
INT: INT:
RDC PTX,
P
D md: Cmd:
ransvma Transmit gop
Rd INT:
RDC
ransDma

Wr

Checking Function

Cmd;

Cmd: TV T
Stop
AbortD INT:

ma RDC

DmaWr

INT:

PTX,
P Cmd:

Transmit

26

NE2K Model Performance

Scenario Total 1/0O I/0 hooked | Ratio (%)
Linux: ssh 1 865055 257324 13.80
Linux: small dl 2602002 69700 2.68
Linux: large dl 294508810 9429917 3.20
Windows: ssh 3769071 286671 7.61
Windows: small dl 1081738 39089 3.61
Windows: large dl | 132898230 088535 0.74

Windows XP sp2
Ubuntu Linux 6.*

27

Experience with NE2K Model

e Only about 1 in 30 I/O port reads/writes
need to be intercepted to drive the model

* Average non-exit cost of updating the
model Is ~100 cycles

— And could be done in parallel with device
execution

28

Challenges

VM exit performance Is primary concern
— Further reduce I/O operations intercepted
— Move model into guest

— Either cooperatively or by code injection
Handling incoming device input

 Network card receive when incorrect guest has
control of NIC

Hardware manufacturers could provide
models along with device drivers

29

Summary

VPIO: A modeling-based approach to high
performance 1/O virtualization for commodity
devices

Intermediate option between passthrough 1/O
and emulated I/O

Promising initial results
Work In progress

30

Thanks!
Questions??

http://v3vee.org/
http://www.presciencelab.org/

Ixia@northwestern.edu
http://www.cs.northwestern.edu/~Ixi1990/

