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Overview

VPIO: A modeling-based approach to high

performance |/O virtualization for commodity
devices

— Models could be provided by HW vendors

Intermediate option between passthrough
/O, and emulated I/O

Promising Initial results
Work In progress
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/O virtualization — paravirtualized 1/O
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/O virtualization — Passthrough 1/0O
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/O virtualization — Direct-Mapped 1/O
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VPIO Goals

 Achieve safe and secure direct-
mapped I/O

* With reusability/multiplexing

e To support commodity devices
— No self-virtualized features

* Without losing too much performance

— Expect a little more performance
overhead compared to pass-through 10



Two Requirements For VPIO

* Inexpensive formal model of device

— Building model easier than building device
driver

— Inexpensive to drive such model
 Device can be context-switched



Core Ildea of VPIO

VMM maintains a formal model of device
— keeps track of the physical device status
— driven by guest/device interactions

Model can determines

— Reusable state — whether device Is currently
serially reusable

— DMA — whether a DMA is about to starting and
what memory locations will be used

— Other Iinteresting states
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Introducing Palacios

New VMM for HPC, architecture, systems, teaching,
and other uses

— Fully Open Source, BSD License

Type | VMM, embeddable into existing kernels
Operating System independent

— Kitten HPC OS (Sandia National Labs)

— GeekOS (University of Maryland)

Implemented using Hardware Virtualization
Extensions

Part of the V3VEE project
— Collaboration between NU and UNM
— http://www.v3vee.org

Available at:
— http://www.v3vee.org/download




Palacios Overview

Supports 32 and 64 bit environments
— Hosts and Guests
— Currently supports Linux Guests

Currently uses AMD SVM extensions
— partial Intel VT support

Full hardware virtualization
— Does not use paravirtualization
— Includes complement of virtual devices

More detalls:

— J. Lange, P. Dinda, “An Introduction to the Palacios Virtual
Machine Monitor---Release 1.0”, Northwestern University EECS
Technical Report NWU-EECS-08-11, November, 2008.

— See us for more info
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Palacios Detalls

* Virtualization Interface
— Hook 10 Ports
— Hook Memory Regions
— Hook interrupts
— Handle VMEXxits

e Host Interface

— Access standard OS facilities
» (debugging, memory allocation)

— Hook host events
 Interrupts, timer, keyboard, etc...

e Can use shadow or nested paging
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* Northwestern University
— Jack Lange (Lead Ph.D student)
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« University of New Mexico
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e Others
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VPIO In Context Of Palacios

............ Unmodified Unmodified
Driver Driver
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Current Status

 VPIO Is a work In progress

 What is implemented in Palacios
— hook 1/O ports
— hook memory address (byte)
 What is tested outside

— Device Model embedded and tested on QEMU
PC emulator version 0.9.1
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Device reguests and interrupts

 Guest talks to device by IN/OUT

— Memory-mapped I/O will be similar

— hooked 1/O list, a list of 1/O port operations for
read/write or both. VMM intercepts these 1/Os

— unhooked I/O list (ideally as large as possible)

e |nterrupts
— All physical interrupts are handled by VMM
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DMA

« DMA is Initiated directly on physical device by guest

— DMM is aware of guest’s DMA operations due to hooked
ports

— DMA destination physical address is checked before the
physical DMA operation is performed

— |If validated, let DMA occur, otherwise, deny it.

e Dealing with DMA failure

— How to notify the guest?
—Ignore the DMA?
— Machine Check Exception?

« Challenge: Dealing with physical address
translations

18



Device Multiplexing

o Context switch between guests
— Switching when device In reusable state
— Device context (related registers, model)

— If not owning device, guest’s operation reguests
are suspended

* Challenge: Device handoff on interrupt
— Handle incoming packet for NIC
— Coming back later
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Cost of VPIO — Experimental
Setup

e Guests’ I/Os performance overhead
— Palacios running on Qemu and HP system
— Qemu PC emulator 0.9.1
— HP ML115 1.8GHz, AMD Opteron 1210
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Issue: Cost of exits (Palacios / AMD SVM)
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VPIO Issue 1/2 : Exit Costs

 Fundamental issue: O(1000) cycle exits.

e Try to minimize number of hooked 1I/O ports

— Model is cheaper in terms of exits than an emulated
device

— Not all I/O ports are needed to drive model
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VPIO Issue 2/2 : Model

e Can we build such models?
— Is it feasible to build the model?

— How easy to build such model, easier than device
driver?

 How expensive are they to run?

23



Device Model

* Not for verification, not a complete behavioral
model

e Only used to determine...

— Whether and when the device is reusable

— Whether DMA is to be initiated

— What device requests are needed to update model
e State machine, with extra information

— Events: device requests, interrupts
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Experimental Setup

e Testing setup

— Embedded model in QEMU PC emulator version
0.9.1

— Tested model on a set of network applications
running in guest OS on Qemu
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NE2K NIC Example

Initiation
Initiate
INT:
PTX,
PX
Cmd: Cmd?
Transmit Stopt—1
Trans ort A aRd
Cmd: Ab :
Stop Dma maWr
AbortD
Cmd
ma A maRd DmaRd
INT: INT:
RDC PTX,
P
D md:  Cmd:
ransvma Transmit gop
Rd INT:
RDC
ransDma

Wr

Checking Function

Cmd;

Cmd: TV T
Stop
AbortD INT:

ma RDC

DmaWr

INT:

PTX,
P Cmd:

Transmit
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NE2K Model Performance

Scenario Total 1/0O I/0 hooked | Ratio (%)
Linux: ssh 1 865055 257324 13.80
Linux: small dl 2602002 69700 2.68
Linux: large dl 294508810 9429917 3.20
Windows: ssh 3769071 286671 7.61
Windows: small dl 1081738 39089 3.61
Windows: large dl | 132898230 088535 0.74

Windows XP sp2
Ubuntu Linux 6.*
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Experience with NE2K Model

e Only about 1 in 30 I/O port reads/writes
need to be intercepted to drive the model

* Average non-exit cost of updating the
model Is ~100 cycles

— And could be done in parallel with device
execution
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Challenges

VM exit performance Is primary concern
— Further reduce I/O operations intercepted
— Move model into guest

— Either cooperatively or by code injection
Handling incoming device input

 Network card receive when incorrect guest has
control of NIC

Hardware manufacturers could provide
models along with device drivers
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Summary

VPIO: A modeling-based approach to high
performance 1/O virtualization for commodity
devices

Intermediate option between passthrough 1/O
and emulated I/O

Promising initial results
Work In progress
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Thanks!
Questions??

http://v3vee.org/
http://www.presciencelab.org/

Ixia@northwestern.edu
http://www.cs.northwestern.edu/~Ixi1990/




