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Abstract—Modern GPUs employ thousands of cores, yielding higher
performance but also higher power consumption. To meet performance
targets while staying within a reasonable power budget, designers have to
make these execution cores increasingly more power efficient. One way
to increase their power efficiency is to employ power-efficient adders.
In this paper, we observe that consecutive arithmetic computations from
the same code location are highly correlated and propose ST2 GPU, a
GPU architecture that uses history-based speculative adders that produce
guaranteed correct results while saving 70% of the nominal adder power.
We estimate that ST2 GPU saves 21% of the GPU chip energy with
practically no performance and area overheads.

I. INTRODUCTION

Graphics Processing Units (GPUs) are becoming increasingly
popular for accelerating both general-purpose and high-performance
computing applications. Currently, there are 147 GPU-accelerated
systems in the TOP500 HPC list [1] and 70% of the top-50 HPC
applications are GPU-accelerated [2]. As the appeal of GPUs grows,
so does the demand for higher performance. To meet the ever-
increasing performance targets, designers cram increasingly more
cores per GPU chip, leading to a commensurate rise in power
consumption. However, the power budget of modern GPUs is already
reaching the limits of practical cooling technology. For example, both
NVIDIA’s Volta GV100 architecture [3] and the previous-generation
Pascal GP100 are limited by the same 250 W thermal design power,
even though GV100 contains 43% more CUDA cores. In order to
continue increasing the core count at a constant power budget, the
cores must become more energy efficient.

Owing to their sheer number on a chip, add/subtract execution
units such as integer arithmetic and logic units (ALUs) and floating-
point units (FPUs) are collectively among the most power-hungry
hardware components. Often, ALUs and FPUs are exercised intensely
by workloads: 21 out of 23 kernels from Rodinia [4], NVIDIA CUDA
Samples [5], and Parboil [6] running on an NVIDIA TITAN V Volta
exhibit high arithmetic intensity, i.e., more than 20% of the executed
dynamic instructions are ALU and FPU instructions (Figure 1). In
this paper, we directly target a reduction in ALU and FPU power
consumption by introducing a new power-efficient adder design, and
an associated GPU architecture.

Our work is inspired by the observation that real-world GPU appli-
cations exhibit an important but overlooked behavior: the computed
values of consecutive operations from the same line of code are often
highly correlated. (i.e., the values computed by the same instruction
as it repeatedly executes, tend to be of similar magnitude). We
capitalize on this observation and propose Spatio-Temporal Shared-
Thread (ST2) adders, a power-efficient speculative adder design that
utilizes the spatio-temporal history of arithmetic operations in a GPU
kernel to perform additions. While the adder executes speculatively,
mispredictions are immediately detected upon the nominal end of
the adder’s execution and corrected in subsequent cycles. Thus, ST2
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Fig. 1. ALU and FPU operations are prevalent in GPU kernels.

adders guarantee correctness. At the same time, they save 70% of
the adder power and achieve 27% higher prediction accuracy over
the current state-of-the-art VaLHALLA [7] design.

We incorporate ST2 adders into a new GPU architecture, ST2

GPU. ST2 GPU modifies the pipeline of an NVIDIA Volta GV100
to accommodate the variable-delay adders, and facilitates access to
history tables by piggy-backing on the GPU’s operand collector.
The ST2 GPU design achieves a 21% chip energy reduction across
23 kernels from Rodinia [4], NVIDIA CUDA Samples [5], and
Parboil [6], with practically no performance and area overheads.

This work makes the following contributions:
• We observe, explain and quantify spatio-temporal value corre-

lation on real-world GPU applications.
• We propose ST2 adders, a speculative adder design that exploits

spatio-temporal value correlation to perform carry speculation
and reduce power consumption. ST2 adders guarantee correct-
ness and outperform state-of-the-art designs.

• We perform a design-space exploration of carry speculation units
on GPUs along the spatial axis (PC correlation), temporal axis
(history depth), and history sharing among threads, and arrive at
a practical, high-performance carry speculation unit for GPUs.

• We propose ST2 GPU, an architecture that integrates ST2 adders
and carry speculation units into the warp pipeline, and show it
achieves significant power savings with negligible overheads.

II. BACKGROUND

A. Volta Architecture and Execution Model

Our GPU architecture model is inspired by the NVIDIA Volta
GV100 GPU architecture [3], and particularly the TITAN V Volta.
The TITAN V Volta has 80 Streaming Multiprocessors (SMs) each
with 64 32-bit integer units (ALUs), 64 32-bit floating-point units
(FPUs), 32 64-bit double-precision units (DPUs), 4 special function
units (SFUs) for complex operations (e.g., log, square root), and
8 tensor cores for matrix arithmetic. Our design targets the adders
within the ALUs, FPUs and DPUs.

GPUs execute programs known as “kernels”, which typically
comprise thousands of threads. Upon launching a kernel, each thread
gets its own GPU-wide unique global thread ID. Threads do not
execute instructions independently; rather, sets of 32 threads (warps)978-1-6654-3274-0/21/$31.00 ©2021 IEEE
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Fig. 2. Value evolution of addition results from the Pathfinder kernel.

execute the same instruction on different data. Each thread in a warp
is identified by its local thread ID, i.e., a number between 0–31. In
the rest of the paper, we refer to these global and local thread IDs.

GPU kernels are offloaded to the the GPU device through the use of
CUDA, a parallel computing platform and application programming
interface model. The CUDA programming environment provides a
parallel thread execution (PTX) [8] instruction set architecture (ISA),
which is an intermediate ISA that exposes the GPU as a data-parallel
computing device. PTX programs are translated at install time to the
target hardware ISA that executes natively on the GPU.

B. Speculative Adders

To reduce power consumption, speculative adders divide a regular
adder’s full bit range into smaller bit ranges (“slices”) and run them
in parallel. As slices are smaller, they can execute at a fraction of the
nominal clock period. Speculative adders exploit the unused clock
period to scale down each slice’s supply voltage to the lowest setting
that allows the slice to still fit within the same cycle time [9], gaining
quadratic power savings. However, running the slices in parallel
breaks the carry-propagation chain. Speculative adders overcome this
obstacle by speculating on the carry-in of each slice.

Approximate speculative adders [10]–[13] do not possess error
correction mechanisms and wrong results are supplied whenever
a carry-in is mispredicted. In contrast, variable latency speculative
adders [7], [14] detect mispredictions at the end of the nominal
execution and occupy additional execution cycles to recompute with
the corrected carry-in if an error occurred. Thus, they always provide
the correct result, but incur an overhead whenever a misprediction
occurs. Our design is inspired by VaLHALLA [7], a recently-
proposed variable-latency adder that is shown to outperform prior
speculative adder designs. VaLHALLA provides a static prediction
for all slices’ carry-ins based on the correlation between the length
of the carry propagation chain and the input operands.

III. SPATIO-TEMPORAL VALUE CORRELATION IN GPUS

A characteristic of applications is that code execution repeats, both
within threads of computation (e.g., in loops) and across threads
(e.g., the same kernel running on separate threads). Thus, the same
instructions, at the same PC, repeat, one iteration after another and
one kernel thread after another. As these “hot” instructions operate
in succession they transform data. While the data values produced
by different instructions often bear limited correlation with each
other, instructions at the same PC often operate on arguments of
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Fig. 3. 8-bit slice carry-in correlation across the temporal & spatial axes.

similar magnitude and produce values similar to the ones the same
instruction produced in the previous invocation. For example, the
same instruction that increments the iterator of a loop will keep
executing, repeatedly producing a sequence of nearby values (e.g., 1,
2, 3). Another instruction in the body of the loop may operate on other
data and produce new values. As that instruction repeats, it produces
values that tend to be within similar magnitudes across a short
window of time, gradually evolving rather than wildly fluctuating
across the integer or floating-point range. In short, code repetition
gives rise to value correlation.

Figure 2 shows a real-world example of value correlation. The
code snippet on Figure 2 is the hot loop of the kernel in pathfinder
from the Rodinia benchmark suite (Section V-A). We highlight the
loop’s addition operations and mark them with their logical PC,
ranging from PC1 to PC7. As these additions execute and operate on
the application’s data, they produce new values. Figure 2 (bottom)
shows the evolution of these values in logical time (i.e., in the order
of instruction execution). Control and data dependencies force the
instructions at PC1, PC2, PC3, PC4, PC5 and PC7 to execute in this
exact order, while PC6 is ordered between PC3 and PC7.

As Figure 2 shows, when observed as a whole the values generated
by these additions as they execute in order vary greatly. The exist
values in the 100s (PC1, PC2), around 0 (PC4, PC5, PC7), and
even tens of thousands (PC6) or negative (PC3). While there is some
correlation in the magnitude of the results from different instructions
that execute consecutively (e.g., both PC4 and PC5 produce values
close to zero), this correlation is weak and is often broken by
instructions producing wildly different results. However, the values
produced by the same instruction (i.e., at the same PC) across
iterations are of similar magnitude and strongly correlated.

This value correlation translates to correlation in the carry chains.
Operations on small positive numbers yield short carry chains, (e.g.,
PC1, PC2, and PC7 which produce carry chains that do not propagate
beyond the first 8 bits), while instructions producing larger values
produce longer carry chains (e.g., PC6’s results may produce a
carry that propagates through the first 16 bits). Additions producing
negative results (e.g., PC3) may produce carry chains that propagate
all the way to bit 63. We observe that while the carry chain
length is weakly correlated across different instructions, it is strongly
correlated across subsequent executions (temporal correlation) of the
same instruction (spatial correlation).

We quantify this spatio-temporal value correlation in our workload
suite in Figure 3. We envision additions performed not in a monolithic
64-bit adder, but rather by stringing together 8-bit adder slices, each
fed with the carry out of the previous 8-bit slice. We compare
the carry-outs/carry-ins between adder slices as instructions execute.
When we compare the carry-ins between consecutive additions exe-
cuted within each thread (same global threadID), regardless of the PC,
only 50% match on average (Prev+Gtid). Thus, there is practically
no correlation along the temporal axis alone. However, when we
compare separately the slice carry-ins from consecutive executions of
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the same PC within each thread, we find matches in 83% of the cases
on average (Prev+FullPC+Gtid). Thus, while temporal correlation
alone is limited, the spatio-temporal correlation is strong. In addition,
as all threads in a GPU kernel’s block execute the same program,
they can learn from each other. When we compare not against the
previous execution of an instruction at the same PC by the same
thread (same global threadID), but across all threads in the same warp
lane (between 0 and 31), then matches are found in 89% of the cases
(Prev+FullPC+Ltid), showing that sharing history among threads can
enhance the speed of finding correlations. In the following section
we capitalize on these observations to design the ST2 adders.

IV. ST2 DESIGN AND SPACE EXPLORATION

A. ST2 Adder Slice Design

The ST2 adder is inspired by VaLHALLA [7] and significantly
improves upon it. Figure 4 depicts the design of the ST2 adder, with
slices 0 and 5 shown in detail. While The NVIDIA TITAN V Volt
GPU has only 32-bit adders, here we show the design of ST2 for
the general case of a 64-bit adder. For simplicity of explanation, let’s
assume that the nominal latency of an ADD operation is 1 cycle.

At the beginning of an ADD operation, ST2 makes a prediction of
the carry-in for each slice and performs the ADD computation. The
prediction is communicated to the adder through signals Cpred[0]−
Cpred[6] from the Carry Register File to each adder slice in Figure 4
(Section IV-B explains how ST2 makes these predictions). At the end
of the nominal execution cycle, each slice compares the prediction
it received (Cpred[4] for slice 5) with the carry-out generated by
the previous slice (Cin[5] for slice 5). If they do not match then
a misprediction has occurred. In that case the slice consumes an
additional cycle to re-compute the ADD operation with the inverse
carry-in of the previous cycle (¬Cpred[4] for slice 5). Thus, the
execution of an ADD may take one or two cycles, depending on
whether there was a misprediction.

If slice i mispredicts, then all carry-outs generated by slices
i+1, ..., 7 are suspect of being incorrect. Thus, upon a misprediction,
an error signal is generated (E[5] for slice 5) that propagates to all
higher-order slices (signals S[i]) and informs them that they may have
received an erroneous carry from their previous slices. Each of the
affected slices will then proceed with a second cycle of computation,
using the inverse carry than the one assumed in the previous cycle. A
1-bit State DFF register keeps track of whether the slice is performing
the first or the second cycle of computation. At the beginning of an
ADD operation, all State DFFs are reset to 0. At the end of the first
cycle, each slice’s State DFF is updated by OR-ing the error signals
of the current and all previous slices, and then stays at that value

until a new operation is assigned to the adder. Thus, the State DFF
remembers whether the predicted carry is to be trusted or not. At
the end of this second cycle all correct carry-ins are known, and
each ST2 slice decides to either keep the results already in its output
register (i.e., the first cycle’s computation was the correct one) or
overwrite them with the result of the second cycle. This operation
is similar to a Carry Select Adder (CSLA) [15]. Unlike CSLA,
though, which always performs computations with both carry-ins for
all slices, ST2 performs additional slice computations only when a
misprediction occurs, and only on the subset of slices that cannot
trust their prediction. Thus, ST2 avoids unnecessary computations
and exhibits significant power savings over CSLA.

B. ST2 Carry Speculation Mechanism and Comparison to VaLHALLA

ST2 improves upon VaLHALLA by offering improved carry specu-
lation. Specifically, it employs speculation only when necessary, pro-
vides per-thread history-based predictions, promotes thread-history
sharing, and is adapted to GPU pipelines. We arrive at the ST2

architecture by performing a design space exploration, shown in
Figure 5. As the figure shows, static carry prediction (e.g., always
predict 0—staticZero) suffers from high error rates (staticOne is even
worse). VaLHALLA reduces the misprediction rate through dynamic
speculation. However, dynamic speculation is not always necessary.
If the most significant bits (MSbs) of the two input operands of the
previous slice (Op1[39] and Op2[39] for slice 5) are both zeros, then
the carry-in will surely be zero; if they are both ones, then the carry-
in will surely be one. Such static predictions are guaranteed to be
correct. ST2 capitalizes on this observation by having each slice peek
at the MSbs of the previous slice to make a static prediction, and
relies on dynamic speculation (and risks errors) only when static
predictions are not possible. VaLHALLA always performs dynamic
speculation even in these cases. Retrofitting VaLHALLA with Peek
further reduces its misprediction rate by 18%.

The second limitation of VaLHALLA is that it predicts a single
1-bit carry for the entire adder, which is broadcasted to all slices.
Providing the same prediction to all slices increases the misprediction
rate and causes additional execution cycles. Instead, ST2 makes
separate carry-in predictions for each slice by observing that consec-
utive arithmetic operations are correlated (Section III). Correlation
increases the likelihood that carry chains have similar lengths among
operations executed close in time. Thus, ST2 remembers, in a previous
carry history table, the carry-outs produced by each slice for an ADD
at time i, and uses them as per-slice predictions for the carry-ins
at time i + 1. The corresponding Prev+Peek design puts everything
together and achieves a 26% reduction in miss rate over VaLHALLA.
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The achieved 20% misprediction rate may still be relatively high,
though, as each misprediction means the ALU will consume addi-
tional cycles, raising the probability of structural hazards. Prev+Peek
fails to achieve very low misprediction rates because it allows all
instructions to alias with each other. While consecutive executions of
the same instruction may be highly correlated and produce similar
output values (Section III), executions of different instructions are
less likely to correlate. To disambiguate predictions, ST2 employs a
number of PC bits as part of the index into the previous carry history
table by using the lowest k bits of the PC as index to the previous
carry history table (ModPCk). Figure 5 shows that as k increases,
the misprediction rate falls. At 4 PC bits the misprediction rate is
just 12%, a full 57% lower than VaLHALLA. Increasing k further
provides diminishing returns.

We speculate that the main limitation of the latest design we
arrived at is thread aliasing. While the history from different instruc-
tions is disambiguated, all threads in Prev+ModPC4+Peek share the
same history, which may cause undesirable destructive interference.
Moreover, there may be significant thread contention, as all threads
that execute the same (or aliasing) instructions may simultaneously
attempt to update the same entry in the carry history table. To
address these problems, we add to Prev+ModPC4+Peek the ability
to disambiguate threads by adding the global thread ID as part of the
carry history table index. The resulting Gtid+Prev+ModPC4+Peek
design completely disambiguates threads. As we see in Figure 5,
however, this design fares significantly worse than most other designs.
Thus, sharing history among threads may be beneficial, indicating that
interference may be constructive as well. By having threads operate
on similar data, they can act as “prefetchers” of the correct carry-ins
into the history table. Our data indirectly support the hypothesis that
constructive interference among threads may be more prevalent.

Armed with this new intuition, we modify the design to incorporate
the local thread ID instead of the global ID in the carry speculation
table index, thereby allowing threads to share predictions across
warps. The resulting design, Ltid+Prev+ModPC4+Peek, achieves a
small 9% misprediction error (Figure 5), which is 65% lower than
VaLHALLA’s. Volta GV100 supports up to 2048 threads/SM [3],
thus Gtid+Prev+ModPC4+Peek may require a 15-bit history table
index (11 global thread ID bits + 4 PC bits) and a commensurately
large history table. In contrast, Ltid+Prev+ModPC4+Peek exhibits
minimal contention that can be practically addressed with random
arbitration, as only the few warps executing the register write-back
pipeline stage at the exact same cycle in the same SM’s computational
cluster may conflict with each other, and only when threads within
these warps mispredict. The speculative adder design we pick for
ST2 is Ltid+Prev+ModPC4+Peek. More complex PC-based indexing
(e.g., XOR-hash of 4-bit PC chunks) provide no additional benefits.

The final ST2 design is in stark contrast to VaLHALLA. VaL-
HALLA predicts the same carry-in for all slices, while ST2 predicts

an independent carry-in per slice based on instruction history (the
Prev mechanism). VaLHALLA performs a prediction on every ADD,
while ST2 predicts only when necessary (the Peek mechanism).
VaLHALLA predictions are performed for each adder, while ST2

allows history sharing across threads. These improvements result in
significantly higher prediction accuracy for ST2 over VaLHALLA.

It is important to note that configurations to the left of
Ltid+Prev+ModPC4+Peek in Figure 5 would be unimplementable
due to numerous hardware threads requiring simultaneous read/write
accesses to the same carry history table entry. This design
space exploration shows that our ST2 adder design which uses
Ltid+Prev+ModPC4+Peek exhibits lower misprediction rates than
even these optimistic approaches (including VaLHALLA) shown in
Figure 5 which ignore contention in accesses to the same history
table entry by multiple hardware threads in an SM.

C. ST2 GPU Microarchitecture

Figure 4 shows a model of a modern GPU warp pipeline with the
proposed modifications to support ST2. As ST2 operates at lower-
than-nominal voltage, level shifters are required when crossing volt-
age domains. A Carry Register File (CRF), placed next to the regular
register file, holds the per-slice carry-outs produced by previous add
operations in a history table. The CRF is read along with operands
from the register file in the register read pipeline stage. The speculated
carry-ins from CRF are sent to the warp’s Functional Units (FUs)—
i.e., adder or FMA units in ALUs, FPUs or DPUs, depending on
the operation—during the execute stage together with the operands,
and are utilized by ST2 adders to perform the computation. The
CRF is structured as a 16 × 224-bit register file. A CRF read uses
PC[3:0] as an index to retrieve 224 bits. These correspond to 7 carry
bit predictions (one for each of slice1, ..., slice7) of each of the
warp’s 32 threads. Upon completion of the operation, threads with
mispredictions update their corresponding bits in the CRF with the
new carry-outs, to be used as predictions in subsequent operations.
The CRF is updated at the write-back pipeline stage along with the
register write-back, similarly to a register file update.

When an FU detects a misprediction, the operation is repeated with
the inverse carry-ins to recover from the error (Section IV-B). Upon
a misprediction, the FU generates a stall signal that propagates to
the scoreboard to prevent the issue of another instruction on the still-
occupied functional unit, and stalls the pipeline register to prevent
instructions already scheduled from getting to the execute stage.

ST2 GPU employs ST2 adders not only in integer ALUs, but
in FPUs and DPUs as well when performing mantissa operations.
Mantissas are 23 or 52 bits for FP32 and FP64, so these units use
3 or 7 slices, respectively. We refrain from employing speculative
adders for exponent operations (exponents are only 8-11 bits wide
and speculation does not provide any benefit) or in other complex
units such as multipliers.

V. ST2 GPU EVALUATION METHODOLOGY

We use GPGPU-Sim 3.x [16] in PTX simulation mode, which is
calibrated against an NVIDIA TITAN V Volta and shown to have
high correlation with hardware performance measurements [17]. We
use this version as the baseline and modify it to incorporate the ST2

GPU architecture. Our simulator models ALUs, FPUs and DPUs as
seperate components that perform adds, subtracts, and a host of other
simpler operations. Multipliers are modeled as separate units.

A. Workloads

Our evaluation suite consists of 23 kernels selected from 18 work-
loads from NVIDIA CUDA Samples [5] (cudaTensorCoreGemm,



BinomialOptions, fastWalshTransform, dct8x8, sortingNetworks,
quasirandomGenerator, histogram, mergesort, and SobolQRNG), Ro-
dinia [4] (kmeans, backprop, sradv1, dwt2d, b+tree, and pathfinder),
and Parboil [6] (sgemm, mri-q, and sad). All workloads were
compiled with NVCC V9.1.85 with support for Volta using the
arch=sm 70 compiler option. We excluded workloads that could not
compile for GPGPU-Sim (e.g., due to unimplemented instructions
like warp.sync) or were impractical to simulate (> 2 days per run).
Additionally, we excluded a few short-running kernels for which we
were unable to collect reliable hardware power measurements from
our power modeling workflow (it probes the hardware at 50–100 Hz,
and as a consequence we could not validate our power model for these
workloads against hardware measurements to ensure its accuracy).
We use the largest available input configuration for all workload runs.

B. Circuit Design

We model all adder designs in Verilog. We synthesize all designs
with the same optimization parameters using Synopsys Design Com-
piler (H-2013.03-SP5-4) and Synopsys IC Compiler (vI-2013.12-
SP5), using the Synopsys SAED 90 nm library. We simulate the
netlists using Synopsys VCS-MX (I-2014.03-2) in analog mode and
Synopsys HSpice (K-2015.06-1) to analyze their energy and delay
characteristics. The reference adder is the default adder synthesized
by Synopsys Design Compiler. It is a state-of-the-art, industrial-
strength design directly imported from the Synopsys DesignWare
Library [18], and synthesized using the recommended default opti-
mization settings to obtain an overall balanced design. We determine
the minimum execution delay of the reference adder when nominal
voltage is supplied, and use it to define the nominal clock period.
Then, we identify the voltage at which we can scale the slices while
still fitting within the nominal clock period. From this characterization
we extract the reference adder and slice power consumption we use in
our modeling. While the circuit modeling is performed with a 90 nm
cell library, we estimate that the relative energy differences across
adder designs will persist when we scale the designs to the 12 nm
FinFET process that NVIDIA Titan V Volta uses.

We perform a design space exploration to identify the optimal
ST2 slice bitwidth. We synthesize sub-adders of different bitwidths,
feed them with random vectors as inputs, and evaluate their power
consumption on the same random input sequence. We identify 8-bit
slices as the best design option for ST2, as they allow the supply
voltage to scale to 60% of the reference voltage, leading to 75–87%
potential energy savings per adder. We model the energy and area
footprint of ST2’s carry speculation unit independently.

C. Power Modeling

To evaluate power consumption, we develop a power model and
extensively validate it before collecting power results for ST2 GPU
over the baseline. We use an internal version of GPUWattch [19]
that was calibrated using a set of micro-benchmarks and an NVIDIA
TITAN V Volta GPU. Following the methodology of GPUWattch,
we develop a suite of 123 micro-benchmarks that isolate and stress
specific GPU hardware components. We run these kernels on silicon
to collect hardware power measurements using the NVIDIA Manage-
ment Library at 50–100 Hz. We then use a least-square-error solver
to calibrate the GPUWattch power scaling factors per component.

At a high level, our power model is represented by:

P total = P const + (N idleSM × P idleSM) +

N∑
i=1

(P i × Scalei) (1)

The constant power Pconst includes power from components such as
GPU board fans, power regulators, peripheral circuitry, and leakage.
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Fig. 6. Thread misprediction rate for ST2 adders.

PidleSM models static power per idle SM, and is multiplied by the
number of idle SMs, NidleSM. We model the dynamic power of each
component i by multiplying the component’s scaling factor Scalei

estimated by the solver, with the component power we obtain from
our GPUWattch simulations, Pi. To estimate the total modeled system
power, we sum the dynamic power of each component with the chip’s
constant power and the total idle SM power. Pconst and PidleSM are also
estimated by our solver across all microbenchmarks.

The NVIDIA Volta GV100 does not have divider units. Instead,
divisions are performed in hardware as an algorithm that uses other
instructions (e.g., FMAs, shifts, etc). However, the PTX ISA includes
division instructions, which subsequently are modeled by GPGPU-
Sim. Thus, we also separately model the power consumption of
division operations; this power does not correspond to a single
hardware component, but rather to the collective instructions that
execute on hardware to calculate the result of a division operation.

We evaluate the accuracy of our power model by applying it on
our benchmark suite of 23 kernels. The model was trained on the
microbenchmark stressors only, thus our benchmark suite constitutes
a proper validation set. We find that our power model attains an
average absolute relative error of 10.5% ± 3.8% (95% confidence
interval), giving it a strong Pearson r coefficient of 0.8.

VI. EVALUATION

We evaluate our design by running the kernels in our benchmark
suite on a simulated ST2 GPU architecture using our in-house
versions of GPGPU-Sim and GPUWattch that incorporate our adder
and warp pipeline designs and the power model. ST2 GPU attains a
9% average thread misprediction rate across all kernels (Figure 6).
We calculate that on average across all kernels, a single thread
misprediction causes 1.94 slices to re-compute their results (up to
2.73). Thus, mispredictions do not cause an excessive energy penalty.

Figure 7 shows the energy breakdown in our suite when running
on a simulated TITAN V Volta baseline and on ST2 GPU. On average
the baseline spends 27% of the total system energy on ALUs/FPUs,
which corresponds to 30% of the chip energy (excluding DRAM).
Kernels such as qrng K1 spend as much as 57% of the system energy
on ALUs/FPUs. We observe that several of our kernels have high
arithmetic intensity, with 14 out of 23 workloads each spending
more than 20% of the system energy on ALU/FPU units. These
workloads spend on average 31% of the total system energy on
ALUs/FPUs, corresponding to an average of 40% of the total chip
energy. Thus, minimizing the ALU/FPU energy consumption holds
significant promise in increasing the energy efficiency of GPUs.

Figure 7 shows that across our kernel suite, ST2 saves on average
19% of the system energy, which corresponds to 21% average chip
energy savings (excluding DRAM). The energy savings for kernels
with high arithmetic intensity are even higher: ST2 GPU saves on
average 26% of the system energy (up to 40% for msort K2), which
corresponds to 28% chip energy savings (up to 42%).

These energy savings come with practically no performance over-
head. A mispredicted carry-in for even one adder slice in a single
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Fig. 7. Normalized system energy for the baseline and ST2 GPU architectures.

thread in a warp would stall the entire warp until the correct output
is obtained. While the penalty may seem high, the ST2 speculation
mechanism exhibits very low misprediction rates (Section IV-B),
and GPUs are tolerant of such additional latencies. Our experiments
show that ST2 GPU practically provides the same performance as
the baseline: the execution time is within 0.36% of the baseline
on average. The worst performance impact among our 23 kernels
is suffered by dwt2d K1, which shows a still small 3.5% slowdown.

The voltage level shifters required for ST2 adders to interface the
new power domain have negligible area and power overheads. Level
shifters in a 45 nm technology can be made at 2.8 µm2 [20]. We
estimate that, using level shifters for each adder’s input operands and
outputs on the chip, even without scaling from 45 nm to 12 nm
FinFETs, these level shifters in total occupy less than 5.5 mm2,
which for a NVIDIA Titan V Volta is 0.68% of the 815 mm2 chip
area. [21] shows that level shifters for 16 nm FinFETs consume
1.38 fJ per transition and 307 nW in static power. Assuming these
level shifters in our design, their total static power consumption for
a Titan V Volta chip without any scaling to 12 nm FinFETs is only
0.6 W. Under the worst case estimation that every single bit of every
instruction that goes through an adder unit flips, thus consuming the
maximum amount of energy in the level shifters, the total dynamic
power consumption of the level shifters, averaged across all kernels in
our suite, is a mere 470 µW. This overestimated level shifter overhead
amounts to just a 0.5% penalty in our average system energy savings
bringing it down to 18.5%. Finally, the worst-case delay per falling
or rising transition for a 500 mV to 790 mV crossing is only 20.8 ps;
in our analysis we also consider the additional delay imposed by the
level shifters at the inputs and outputs of our ST2 adders.

Finally, the ST2 GPU area overhead is negligible, as we illustrate
by considering a hypothetical NVIDIA TITAN V Volta with ST2

GPU. Every SM has a 448-byte CRF (16× 224 bits), thus the entire
chip requires just 35 kB of total additional area. Moreover, each
slice (except 0) has 2 bits for the state and Cout DFFs (Figure 4).
Thus, each ALU adder requires an additional 14 bits, and FP32 and
FP64 adders need 4 and 12 bits, respectively, for the mantissa adders.
Overall, the space requirements for the DFFs amount to an additional
15 kB per chip. This brings the ST2 overhead to a total of 50 kB per
chip, which is a mere 0.09% of the on-chip caches and register files.

VII. RELATED WORK

Approximate speculative adders [10]–[13] split execution into
multiple slices that run in parallel with predicted carry-ins. However,
they do not employ error correction and supply wrong results
whenever a carry-in is mispredicted. VLSA [14] speculates on carry-
ins, but detects mispredictions and occupies additional cycles to
recompute with the corrected carry-in if an error occurs. CASA [13]
provides a static prediction for all slices’ carry-ins based on the
correlation between the input operands. VaLHALLA [7] extends

CASA to a variable-latency speculative adder that speculates carry-ins
for all operations. In contrast, ST2 employs speculation only when
needed, and introduces novel concepts such as per-thread history-
based predictions and thread-history sharing, and is adapted to GPUs.

VIII. CONCLUSIONS

Just like most modern chips, GPU scaling is hampered by power
limitations. We address this problem with ST2 GPU, a GPU archi-
tecture that employs history-based speculative adders that produce
guaranteed correct results while saving power. We explore the design
space of the speculative mechanisms and arrive at an adder design
that shows high accuracy (91% on average) and high power savings
(70% of the nominal adder power). Overall, ST2 GPU reduces the
energy consumed by a GPU chip by 21% (and chip+DRAM by 19%),
with minimal area overhead and practically no performance impact.
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